12-P012 A bioinformatic and in situ screen for novel axon guidance molecules

نویسندگان

  • Samantha Alsbury
  • Tatsuya Okafuji
  • Kevin J. Mitchell
  • Guy Tear
چکیده

The forebrain cholinergic system consists of the cholinergic interneurons of the striatum and projection neurons that are distributed in loosely defined groups along the basal forebrain. Forebrain cholinergic neurons (FCNs) are born between E11 and E15, begin to express cholinergic markers at late embryonic stages, invade their projection target areas postnatally and continue to mature for weeks after birth. Little is known about the cell-intrinsic factors that regulate this process. FCNs derive from NKX2.1 precursors that upon exiting the cell cycle express the LIM homeodomain proteins LHX7 and ISL1. Our group and others have shown that deletion of Lhx7 leads to a reduction of 80% in the number of FCNs. In particular, studies from our group have demonstrated that in the striatum of Lhx7 null mice the missing cholinergic interneurons are respecified as GABAergic interneurons (Fragkouli et al., submitted). Similarly, deletion of Isl1 results in a dramatic reduction in the number of FCNs . To gain further insight into the role of LHX7 and ISL1 in the development and maintenance of the FCNs we have generated and analyzed an Lhx7 conditional knockout. Here we describe the effect of deleting Lhx7 at embryonic and postnatal stages using the Nkx2.1-Cre and Isl1-Cre lines and an inducible Cre line. We also report on studies addressing the role of Isl1 in the development of FCNs. We discuss the role of LIM HD transcription factors in the development of FCNs and in the plasticity of cholinergic phenotype at different pre and postnatal stages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Transduction Mechanisms In Commissural Axon Guidance: The Role Of Intracellular Tyrosine Kinases In Netrin-Dcc/frazzled Axon Attraction

To develop a functional nervous system, neural circuits are initially established through the stepwise process of neural specification, axon guidance and synaptogenesis. Axon guidance, the process by which neurons extend axons to their final targets, relies on the presence of extracellular cues, and their respective guidance receptors. Intracellular molecules that transduce these signals are cu...

متن کامل

Dystroglycan Organizes Axon Guidance Cue Localization and Axonal Pathfinding

Precise patterning of axon guidance cue distribution is critical for nervous system development. Using a murine forward genetic screen for novel determinants of axon guidance, we identified B3gnt1 and ISPD as required for the glycosylation of dystroglycan in vivo. Analysis of B3gnt1, ISPD, and dystroglycan mutant mice revealed a critical role for glycosylated dystroglycan in the development of ...

متن کامل

Repulsive Wnt signaling inhibits axon regeneration after CNS injury.

Failure of axon regeneration in the mammalian CNS is attributable in part to the presence of various inhibitory molecules, including myelin-associated proteins and proteoglycans enriched in glial scars. Here, we evaluate whether axon guidance molecules also regulate regenerative growth after injury in adulthood. Wnts are a large family of axon guidance molecules that can attract ascending axons...

متن کامل

Extension of the Caenorhabditis elegans Pharyngeal M1 Neuron Axon Is Regulated by Multiple Mechanisms

The guidance of axons to their correct targets is a critical step in development. The C. elegans pharynx presents an attractive system to study neuronal pathfinding in the context of a developing organ. The worm pharynx contains relatively few cells and cell types, but each cell has a known lineage and stereotyped developmental patterns. We found that extension of the M1 pharyngeal axon, which ...

متن کامل

A gain-of-function screen for genes that influence axon guidance identifies the NF-kappaB protein dorsal and reveals a requirement for the kinase Pelle in Drosophila photoreceptor axon targeting.

To identify novel regulators of nervous system development, we used the GAL4-UAS misexpression system in Drosophila to screen for genes that influence axon guidance in developing embryos. We mobilized the Gene Search (GS) P element and identified 42 lines with insertions in unique loci, including leak/roundabout2, which encodes an axon guidance receptor and confirms the utility of our screen. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2009